Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2-Bis(2-methyl-5-phenyl-3-thienyl)benzene

Wen-Juan Miao,^a Liang-Hua Li,^b Shan Lu,^c Gang Liu^a and Cong-Bin Fan^a*

^aJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China, ^bEast China liaotong University, School of Physical Education, Nanchang 330013, People's Republic of China, and ^cDepartment of Control Science and Engineering, Zhejiang University Zhejiang 310027, People's Republic of China

Correspondence e-mail: congbinfan@yahoo.com.cn

Received 29 October 2009; accepted 2 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 15.2.

In the molecule of the title compound, $C_{28}H_{22}S_2$, the two thiophene rings are twisted with respect to the central benzene ring, making dihedral angles of 71.59 (12) and 50.71 $(12)^{\circ}$. The two terminal benzene rings are oriented at dihedral angles of 37.59 (11) and 20.12 (11) $^{\circ}$ to their bonded thiophene rings.

Related literature

For the synthesis of the precursor, see: Irie et al. (2000). For applications of photochromic molecules, see: Irie et al. (2001). For diarylethenes with four different bridging units, see: Peters et al. (2003); Yamaguchi et al. (1997); Lucas et al. (1998); Chen & Zeng (2004). For ring-closure reactions, see: Ramamurthy & Venkatesan (1987). For a related structure, see: Pu et al. (2005).

Experimental

Crystal data

$\gamma = 86.362 \ (1)^{\circ}$
V = 1120.7 (2) Å ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.25 \text{ mm}^{-1}$
$T = 296 { m K}$
$0.40 \times 0.24 \times 0.15 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	8610 measured reflections
diffractometer	4136 independent reflections
Absorption correction: multi-scan	2920 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.021$
$T_{\min} = 0.907, \ T_{\max} = 0.964$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	273 parameters
$wR(F^2) = 0.108$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
4136 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ \AA}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

This work was supported by the Science Fund of the Education Office of Jiangxi (GJJ09306, GJJ09302) and the Youth Science Fund of the Education Office of Jiangxi (GJJ09572).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2660).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. & Zeng, D. X. (2004). J. Org. Chem. 69, 5037-5040.
- Irie, M., Kobatake, S. & Horichim, M. (2001). Science, 291, 1769-1772.
- Irie, M., Lifka, T., Kobatake, S. & Kato, N. (2000). J. Am. Chem. Soc. 122, 4871-4876
- Lucas, L. N., Esch, J. V., Kellogg, R. M. & Feringa, B. L. (1998). Chem. Commun. pp. 2313-2314.
- Peters, N., Vitols, C., McDonald, R. & Branda, N. R. (2003). Org. Lett. 5, 1183-1186

Pu, S.-Z., Liu, G., Chen, B. & Wang, R.-J. (2005). Acta Cryst. C61, 0599-0601.

- Ramamurthy, V. & Venkatesan, K. (1987). Chem. Rev. 87, 433-481.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yamaguchi, T., Uchida, K. & Irie, M. (1997). J. Am. Chem. Soc. 119, 6066-6071

Acta Cryst. (2009). E65, o3003 [doi:10.1107/S1600536809045917]

1,2-Bis(2-methyl-5-phenyl-3-thienyl)benzene

W.-J. Miao, L.-H. Li, S. Lu, G. Liu and C.-B. Fan

Comment

The design and synthesis of photochromic molecules is an area of intense research because of the widespread use in photonic device applications such as memory media and optical switching (Irie *et al.* 2001). To date, four kinds of diarylethenes with different bridge units have been reported, that is diarylethenes with a perfluorocyclopentene moiety (Peters *et al.* 2003), diarylethenes with maleic anhydride and maleimide moieties (Yamaguchi *et al.* 1997), diarylethenes with a cyclopentene moiety (Lucas *et al.* 1998), and diarylethenes with a 2,5-dihydrothiphene moiety (Chen & Zeng, 2004). One of our research goals is to develop a novel diarylethene derivative with the inexpensive benzene ring as bridge unit. In this paper, the *ORTEP* drawing of the single-crystal shows the title compound, *i.e.* 1,2-(2-methyl-5-phenyl-3-thienyl)benzene, packed in a parallel conformation which is very rare in other diarylethene system. The two independent planar thiophene ring systems have essentially identical geometries, and the dihedral angles between the central benzene-ring and these of the two thiophene rings, S1/C7—C10, and S2/ C18—C21 are 71.6 (4)° and 50.5 (7)°. The two thiophene groups are linked by the central benzene-ring, with both of them attached to the ethylene group *via* the 2-position. The distance between the two C atoms (C8…C19) is 4.06 (7) Å, which is short enough, theoretically, for the ring-closure reaction to take place in the crystalline phase (Ramamurthy & Venkatesan, 1987), but the crystals of the title compound is parallel thiophene-ring, so, the crystals cannot show photochromism.

Experimental

2-Methyl-5-phenylthiophen-3-yl-3-boronic acid, (2) in Fig 2, was obtained in the presence of compound 3-bromo-2-methyl-5-phenylthiophene, (1), (Irie *et al.*, 2000) (2.53 g, 10.00 mmol) in a n-BuLi/hexane solution (2.50 mol/*L*, 12.00 mmol) and tri-n-butylborate (2.76 g, 12.00 mmol) at 195 K under a nitrogen atmosphere.

The title compound was prepared by adding compound (2) (0.88 g, 4.05 mmol) with Na₂CO₃ (2.00 mol/*L*, 60.00 mmol) to a stirred THF solution (50 ml) containing 1,2-dibromobenzene (0.48 g, 2.03 mmol) and Pd(PPh₃)₄ (0.27 g) at 293 K under a nitrogen atmosphere. After reflux for 16 h, the reaction mixture was extracted with ether, evaporated *in vacuo* and purified by column chromatography on SiO₂ using petroleum ether as the eluent to obtain the title compound. Single crystals of the title compound (1a) were grown from a chloroform solution by slow evaporation (m.p. 404.8–405.2 K).

Refinement

H atoms were placed in calculated positions and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for the others.

Figures

Fig. 1. Molecular view the atom-labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. The preparation of the title compound.

1,2-Bis(2-methyl-5-phenyl-3-thienyl)benzene

Crystal data	
$C_{28}H_{22}S_2$	Z = 2
$M_r = 422.58$	$F_{000} = 444$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.252 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.0934 (12) Å	Cell parameters from 2224 reflections
b = 10.0945 (12) Å	$\theta = 2.6 - 22.8^{\circ}$
c = 11.9565 (15) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\alpha = 83.8030 \ (10)^{\circ}$	T = 296 K
$\beta = 67.7690 \ (10)^{\circ}$	Block, colourless
$\gamma = 86.3620 \ (10)^{\circ}$	$0.40\times0.24\times0.15~mm$
$V = 1120.7 (2) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	4136 independent reflections
Radiation source: fine-focus sealed tube	2920 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
<i>T</i> = 296 K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.907, \ T_{\max} = 0.964$	$k = -12 \rightarrow 12$
8610 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.2296P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.006$
4136 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
273 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. ¹HNMR (400 MHz, CDCl₃, TMS): δ 2.17 (s, 3H, -CH₃), 6.92 (s, 1H, thienyl-H), 7.20 (t, 1H, *J*=7.2 Hz,phenyl-H), 7.29 (t, 2H, *J*=7.4 Hz, phenyl-H), 7.42–7.44 (m, 4H, phenyl-H). ¹³C NMR (100 MHz, CDCl₃): δ 13.93, 125.51, 126.00, 127.00, 127.26, 128.76, 130.61, 134.60, 135.03, 136.09, 139.01, 139.45. IR (KBr, cm⁻¹): 756, 766, 849, 908, 946, 1001, 1029, 1073, 1153, 1184, 1227, 1377, 1462, 1479, 1505, 1596, 1629, 2854, 2924, 3014, 3053, 3254, 3443, 3529, 3676.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.8690 (3)	0.1761 (2)	0.33341 (19)	0.0593 (6)
C2	1.0178 (3)	0.1571 (2)	0.27841 (19)	0.0632 (6)
C3	1.0724 (3)	0.0279 (3)	0.2524 (2)	0.0837 (8)
H3	1.1708	0.0137	0.2160	0.100*
C4	0.9833 (5)	-0.0781 (3)	0.2798 (3)	0.1002 (11)
H4	1.0217	-0.1633	0.2634	0.120*
C5	0.8382 (5)	-0.0587 (3)	0.3312 (3)	0.0994 (11)
H5	0.7780	-0.1303	0.3478	0.119*
C6	0.7806 (3)	0.0679 (2)	0.3587 (2)	0.0803 (7)
H6	0.6819	0.0803	0.3944	0.096*
C7	0.8057 (2)	0.3112 (2)	0.36380 (18)	0.0534 (5)
C8	0.8183 (2)	0.3757 (2)	0.45372 (19)	0.0564 (5)
C9	0.6907 (2)	0.5132 (2)	0.33745 (18)	0.0517 (5)
C10	0.7318 (2)	0.3902 (2)	0.29899 (19)	0.0563 (5)
H10	0.7133	0.3602	0.2357	0.068*
C11	0.8878 (3)	0.3254 (3)	0.5415 (2)	0.0791 (7)
H11A	0.9079	0.2315	0.5370	0.119*

H11B	0.8245	0.3414	0.6223	0.119*
H11C	0.9755	0.3712	0.5214	0.119*
C12	0.6259 (2)	0.6253 (2)	0.28537 (19)	0.0535 (5)
C13	0.6640 (2)	0.6476 (2)	0.1601 (2)	0.0626 (6)
H13	0.7277	0.5890	0.1095	0.075*
C14	0.6079 (3)	0.7558 (3)	0.1111 (3)	0.0798 (7)
H14	0.6339	0.7703	0.0274	0.096*
C15	0.5132 (3)	0.8426 (3)	0.1857 (3)	0.0821 (8)
H15	0.4765	0.9163	0.1523	0.099*
C16	0.4735 (3)	0.8211 (3)	0.3071 (3)	0.0855 (8)
H16	0.4077	0.8791	0.3568	0.103*
C17	0.5293 (2)	0.7141 (2)	0.3585 (2)	0.0692 (6)
H17	0.5022	0.7013	0.4424	0.083*
C18	1.1146 (2)	0.2710 (2)	0.24104 (19)	0.0586 (6)
C19	1.2360 (3)	0.2804 (2)	0.2660 (2)	0.0659 (6)
C20	1.1898 (2)	0.4834 (2)	0.14581 (18)	0.0552 (5)
C21	1.0915 (2)	0.3879 (2)	0.17170 (18)	0.0554 (5)
H21	1.0148	0.3978	0.1462	0.066*
C22	1.2975 (3)	0.1831 (3)	0.3393 (3)	0.0933 (9)
H22A	1.2255	0.1213	0.3891	0.140*
H22B	1.3286	0.2306	0.3899	0.140*
H22C	1.3775	0.1354	0.2855	0.140*
C23	1.1947 (2)	0.6143 (2)	0.07776 (19)	0.0567 (5)
C24	1.3183 (3)	0.6851 (3)	0.0253 (3)	0.0844 (8)
H24	1.4020	0.6492	0.0327	0.101*
C25	1.3216 (4)	0.8071 (3)	-0.0376 (3)	0.1023 (10)
H25	1.4068	0.8529	-0.0719	0.123*
C26	1.2003 (4)	0.8618 (3)	-0.0504 (2)	0.0908 (9)
H26	1.2025	0.9452	-0.0926	0.109*
C27	1.0761 (4)	0.7937 (3)	-0.0010 (2)	0.0833 (8)
H27	0.9936	0.8298	-0.0108	0.100*
C28	1.0726 (3)	0.6706 (2)	0.0638 (2)	0.0664 (6)
H28	0.9871	0.6252	0.0984	0.080*
S1	0.74075 (6)	0.53246 (6)	0.45767 (5)	0.06329 (19)
S2	1.31728 (6)	0.43038 (7)	0.20603 (6)	0.0720 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0884 (17)	0.0445 (12)	0.0466 (12)	-0.0012 (11)	-0.0277 (12)	-0.0017 (9)
C2	0.0946 (18)	0.0483 (13)	0.0484 (12)	0.0156 (12)	-0.0301 (12)	-0.0083 (10)
C3	0.131 (2)	0.0569 (16)	0.0672 (16)	0.0299 (16)	-0.0444 (16)	-0.0162 (13)
C4	0.188 (4)	0.0461 (16)	0.081 (2)	0.021 (2)	-0.068 (2)	-0.0143 (14)
C5	0.184 (4)	0.0475 (16)	0.080 (2)	-0.023 (2)	-0.066 (2)	0.0057 (14)
C6	0.118 (2)	0.0591 (16)	0.0649 (16)	-0.0183 (15)	-0.0345 (15)	0.0021 (12)
C7	0.0589 (13)	0.0478 (12)	0.0491 (12)	-0.0035 (10)	-0.0159 (10)	-0.0009 (9)
C8	0.0610 (13)	0.0558 (13)	0.0527 (12)	0.0030 (10)	-0.0217 (10)	-0.0075 (10)
C9	0.0501 (11)	0.0513 (12)	0.0501 (12)	-0.0015 (9)	-0.0141 (9)	-0.0067 (10)

C10	0.0634 (13)	0.0543 (13)	0.0525 (12)	-0.0050 (10)	-0.0219 (11)	-0.0085 (10)
C11	0.0984 (19)	0.0797 (17)	0.0720 (16)	0.0163 (15)	-0.0466 (15)	-0.0164 (13)
C12	0.0456 (11)	0.0528 (12)	0.0599 (13)	-0.0046 (9)	-0.0166 (10)	-0.0054 (10)
C13	0.0586 (13)	0.0684 (15)	0.0603 (14)	0.0055 (11)	-0.0224 (11)	-0.0072 (11)
C14	0.0778 (17)	0.0892 (19)	0.0730 (17)	-0.0020 (15)	-0.0326 (14)	0.0068 (15)
C15	0.0871 (19)	0.0654 (16)	0.090 (2)	0.0093 (14)	-0.0358 (16)	0.0098 (15)
C16	0.0881 (19)	0.0652 (17)	0.091 (2)	0.0222 (14)	-0.0230 (16)	-0.0115 (15)
C17	0.0703 (15)	0.0608 (15)	0.0668 (15)	0.0054 (12)	-0.0164 (12)	-0.0032 (12)
C18	0.0679 (14)	0.0547 (13)	0.0486 (12)	0.0163 (11)	-0.0177 (11)	-0.0113 (10)
C19	0.0751 (15)	0.0671 (15)	0.0543 (13)	0.0249 (12)	-0.0247 (12)	-0.0144 (11)
C20	0.0573 (13)	0.0598 (13)	0.0472 (12)	0.0106 (11)	-0.0181 (10)	-0.0116 (10)
C21	0.0596 (13)	0.0561 (13)	0.0490 (12)	0.0106 (11)	-0.0195 (10)	-0.0081 (10)
C22	0.115 (2)	0.0891 (19)	0.0877 (19)	0.0411 (17)	-0.0562 (18)	-0.0157 (15)
C23	0.0633 (14)	0.0582 (13)	0.0478 (12)	0.0019 (11)	-0.0185 (11)	-0.0124 (10)
C24	0.0715 (17)	0.0837 (19)	0.092 (2)	-0.0104 (14)	-0.0261 (15)	0.0034 (16)
C25	0.107 (2)	0.086 (2)	0.100(2)	-0.0264 (19)	-0.025 (2)	0.0139 (18)
C26	0.149 (3)	0.0630 (17)	0.0606 (16)	-0.011 (2)	-0.0398 (19)	0.0025 (13)
C27	0.114 (2)	0.0696 (17)	0.0803 (18)	0.0118 (17)	-0.0540 (18)	-0.0101 (14)
C28	0.0756 (16)	0.0585 (14)	0.0708 (15)	0.0037 (12)	-0.0347 (13)	-0.0059 (12)
S1	0.0722 (4)	0.0584 (4)	0.0657 (4)	0.0089 (3)	-0.0312 (3)	-0.0185 (3)
S2	0.0651 (4)	0.0846 (5)	0.0711 (4)	0.0146 (3)	-0.0318 (3)	-0.0135 (3)

Geometric parameters (Å, °)

C1—C6	1.389 (3)	C14—H14	0.9300
C1—C2	1.403 (3)	C15—C16	1.348 (4)
C1—C7	1.490 (3)	C15—H15	0.9300
C2—C3	1.403 (3)	C16—C17	1.380 (3)
C2—C18	1.475 (3)	С16—Н16	0.9300
C3—C4	1.373 (4)	C17—H17	0.9300
С3—Н3	0.9300	C18—C19	1.377 (3)
C4—C5	1.367 (4)	C18—C21	1.427 (3)
C4—H4	0.9300	C19—C22	1.505 (3)
C5—C6	1.390 (4)	C19—S2	1.720 (3)
С5—Н5	0.9300	C20—C21	1.354 (3)
С6—Н6	0.9300	C20—C23	1.468 (3)
C7—C8	1.364 (3)	C20—S2	1.730 (2)
C7—C10	1.422 (3)	C21—H21	0.9300
C8—C11	1.500 (3)	C22—H22A	0.9600
C8—S1	1.718 (2)	C22—H22B	0.9600
C9—C10	1.356 (3)	C22—H22C	0.9600
C9—C12	1.469 (3)	C23—C24	1.373 (3)
C9—S1	1.727 (2)	C23—C28	1.384 (3)
C10—H10	0.9300	C24—C25	1.367 (4)
C11—H11A	0.9600	C24—H24	0.9300
C11—H11B	0.9600	C25—C26	1.366 (4)
C11—H11C	0.9600	С25—Н25	0.9300
C12—C17	1.390 (3)	C26—C27	1.362 (4)
C12—C13	1.394 (3)	C26—H26	0.9300

C13—C14	1.375 (3)	C27—C28	1.388 (3)
С13—Н13	0.9300	С27—Н27	0.9300
C14—C15	1.376 (4)	C28—H28	0.9300
C6—C1—C2	119.4 (2)	C16—C15—H15	119.9
C6—C1—C7	120.1 (2)	C14—C15—H15	119.9
C2 - C1 - C7	120.50(19)	C15-C16-C17	120 8 (2)
C1 - C2 - C3	118 4 (2)	C15-C16-H16	119.6
C1 - C2 - C18	121.09(18)	C17—C16—H16	119.6
C_{3} — C_{2} — C_{18}	120.4 (2)	C16—C17—C12	120.1 (2)
C4—C3—C2	121.2 (3)	C16—C17—H17	119.9
С4—С3—Н3	119.4	C12—C17—H17	119.9
С2—С3—Н3	119.4	C19—C18—C21	111.2 (2)
C5—C4—C3	120.2 (3)	C19—C18—C2	126.3 (2)
С5—С4—Н4	119.9	C21—C18—C2	122.4 (2)
C3—C4—H4	119.9	C18—C19—C22	129.2 (2)
C4-C5-C6	120 1 (3)	C18—C19—S2	111 29 (17)
С4—С5—Н5	120.0	$C_{22} = C_{19} = S_{2}^{2}$	119.5 (2)
Сб-С5-Н5	120.0	$C_{21} - C_{20} - C_{23}$	127.9(2)
C1 - C6 - C5	120.7 (3)	$C_{21} = C_{20} = S_{22}$	109.85 (16)
C1_C6_H6	119.7	C_{23} C_{20} S_{2}	109.09 (10)
C5-C6-H6	119.7	$C_{20} = C_{21} = C_{18}$	122.20(10) 114.9(2)
C8 - C7 - C10	112.25 (19)	$C_{20} = C_{21} = H_{21}$	122.5
$C_{8} - C_{7} - C_{1}$	123.57 (19)	C_{18} C_{21} H_{21}	122.5
$C_{10} - C_{7} - C_{1}$	123.37 (19)	C19 - C22 - H22A	109.5
C7 - C8 - C11	124.11(1)	C19 - C22 - H22R	109.5
C7 - C8 - S1	110.85 (16)	$H_{22} = C_{22} = H_{22} B$	109.5
$C_{11} = C_{8} = S_{1}$	121.04 (16)	C19 - C22 - H22C	109.5
$C_{10} - C_{9} - C_{12}$	121.04(10) 129.5(2)	H_{22}^{-} H_{22}^{-} H_{22}^{-}	109.5
C10 - C9 - S1	129.5(2) 109.77(16)	H22B_C22_H22C	109.5
$C_{10} = C_{9} = S_{1}$	109.77(10) 120.54(15)	1122D - C22 - 1122C C24 - C23 - C28	107.5 117.4(2)
$C_{12} = C_{10} = C_{10}$	114 25 (19)	$C_{24} = C_{23} = C_{20}$	117.7(2)
C9 - C10 - H10	122.9	$C_{24} = C_{23} = C_{20}$	122.3(2) 120.3(2)
C7-C10-H10	122.9	$C_{25} = C_{25} = C_{25} = C_{25}$	120.5(2) 121.8(3)
C_{8} C_{11} H_{11A}	109.5	$C_{25} = C_{24} = C_{25}$	121.0 (5)
C8-C11-H11B	109.5	C_{23} C_{24} H_{24}	119.1
	109.5	$C_{25} = C_{25} = C_{24}$	120.3 (3)
C8_C11_H11C	109.5	C26—C25—H25	120.5 (5)
	109.5	$C_{20} = C_{20} = H_{20}$	119.9
H11B_C11_H11C	109.5	$C_{24} = C_{25} = 1125$	119.5
C_{17} C_{12} C_{13}	109.5 118 3 (2)	$C_{27} - C_{20} - C_{23}$	119.0 (5)
C17 - C12 - C9	110.5(2) 1213(2)	C_{25} C_{26} H_{26}	120.2
C_{13} C_{12} C_{9}	121.3(2) 120.39(19)	$C_{26} = C_{27} = C_{28}$	120.2
C14 - C13 - C12	120.59 (19)	C26—C27—H27	120.0
C_{14} C_{13} H_{13}	119.8	$C_{28} = C_{27} = H_{27}$	120.0
C12_C13_H13	119.8	C_{23} C_{28} C_{27}	120.0 120.9(2)
C13 - C14 - C15	120.0 (2)	C23—C28—H28	119.6
C13—C14—H14	120.0	C27—C28—H28	119.6
C15-C14-H14	120.0	C8 = S1 = C9	92.87 (10)
C16-C15-C14	120.3 (2)	C19 - S2 - C20	92.73 (11)

-1.0 (3)	C9—C12—C17—C16	177.9 (2)
179.48 (19)	C1—C2—C18—C19	131.3 (2)
175.0 (2)	C3—C2—C18—C19	-52.8 (3)
-4.6 (3)	C1-C2-C18-C21	-48.9 (3)
0.0 (3)	C3—C2—C18—C21	126.9 (2)
-176.0 (2)	C21—C18—C19—C22	177.8 (2)
1.3 (4)	C2-C18-C19-C22	-2.4 (4)
-1.6 (4)	C21—C18—C19—S2	0.5 (2)
0.7 (3)	C2-C18-C19-S2	-179.78 (16)
-179.8 (2)	C23—C20—C21—C18	-179.37 (19)
0.6 (4)	S2-C20-C21-C18	0.6 (2)
110.3 (3)	C19—C18—C21—C20	-0.7 (3)
-70.1 (3)	C2-C18-C21-C20	179.54 (18)
-73.0 (3)	C21—C20—C23—C24	-159.5 (2)
106.6 (2)	S2—C20—C23—C24	20.6 (3)
179.6 (2)	C21—C20—C23—C28	20.2 (3)
-3.3 (4)	S2—C20—C23—C28	-159.79 (17)
-0.4 (2)	C28—C23—C24—C25	0.5 (4)
176.70 (17)	C20—C23—C24—C25	-179.8 (3)
173.27 (19)	C23—C24—C25—C26	-0.3 (5)
-1.0 (2)	C24—C25—C26—C27	-0.6 (5)
0.9 (3)	C25—C26—C27—C28	1.2 (4)
-176.1 (2)	C24—C23—C28—C27	0.1 (3)
147.8 (2)	C20-C23-C28-C27	-179.5 (2)
-38.5 (3)	C26—C27—C28—C23	-1.0 (4)
-34.4 (3)	C7—C8—S1—C9	-0.15 (17)
139.39 (18)	C11—C8—S1—C9	179.88 (19)
0.7 (3)	C10—C9—S1—C8	0.66 (17)
-177.3 (2)	C12—C9—S1—C8	-174.21 (17)
-0.2 (4)	C18—C19—S2—C20	-0.12 (17)
-0.9 (4)	C22-C19-S2-C20	-177.74 (19)
1.6 (4)	C21—C20—S2—C19	-0.27 (16)
-1.1 (4)	C23—C20—S2—C19	179.69 (17)
0.0 (3)		
	$\begin{array}{c} -1.0 (3) \\ 179.48 (19) \\ 175.0 (2) \\ -4.6 (3) \\ 0.0 (3) \\ -176.0 (2) \\ 1.3 (4) \\ -1.6 (4) \\ 0.7 (3) \\ -179.8 (2) \\ 0.6 (4) \\ 110.3 (3) \\ -70.1 (3) \\ -73.0 (3) \\ 106.6 (2) \\ 179.6 (2) \\ -3.3 (4) \\ -0.4 (2) \\ 176.70 (17) \\ 173.27 (19) \\ -1.0 (2) \\ 0.9 (3) \\ -176.1 (2) \\ 147.8 (2) \\ -38.5 (3) \\ -38.5 (3) \\ -34.4 (3) \\ 139.39 (18) \\ 0.7 (3) \\ -177.3 (2) \\ -0.2 (4) \\ -0.9 (4) \\ 1.6 (4) \\ -1.1 (4) \\ 0.0 (3) \end{array}$	-1.0 (3) $C9-C12-C17-C16$ $179.48 (19)$ $C1-C2-C18-C19$ $175.0 (2)$ $C3-C2-C18-C19$ $-4.6 (3)$ $C1-C2-C18-C21$ $0.0 (3)$ $C3-C2-C18-C19-C22$ $-176.0 (2)$ $C21-C18-C19-C22$ $1.3 (4)$ $C2-C18-C19-C22$ $-1.6 (4)$ $C21-C18-C19-S2$ $0.7 (3)$ $C2-C18-C19-S2$ $0.7 (3)$ $C2-C18-C19-S2$ $-779.8 (2)$ $C23-C20-C21-C18$ $0.6 (4)$ $S2-C20-C21-C18$ $0.6 (4)$ $S2-C20-C23-C24$ $106.6 (2)$ $S2-C20-C23-C24$ $106.6 (2)$ $S2-C20-C23-C24$ $179.6 (2)$ $C21-C20-C23-C28$ $-3.3 (4)$ $S2-C20-C23-C24$ $176.70 (17)$ $C20-C23-C24-C25$ $176.70 (17)$ $C20-C23-C24-C25$ $176.70 (17)$ $C23-C24-C25-C26-C27$ $0.9 (3)$ $C25-C26-C27-C28$ $-176.1 (2)$ $C24-C23-C28-C27$ $147.8 (2)$ $C20-C23-C28-C27$ $-38.5 (3)$ $C26-C27-C28-C23$ $-34.4 (3)$ $C7-C8-S1-C9$ $139.39 (18)$ $C11-C8-S1-C9$ $0.7 (3)$ $C10-C9-S1-C8$ $-177.3 (2)$ $C12-C9-S1-C8$ $-177.3 (2)$ $C12-C9-S1-C8$ $-177.3 (2)$ $C12-C20-S2-C19$ $-1.1 (4)$ $C23-C20-S2-C19$ $-1.1 (4)$ $C23-C20-S2-C19$

Fig. 1

Fig. 2

